Бесплодие межвидовых растительных гибридов возможно преодолевать с помощью

«Селекция»
тест по биологии по теме

Тестирование по теме: «Селекция»

Скачать:

Предварительный просмотр:

1. Научная и практическая деятельность человека по улучшению старых и выведению новых пород сортов и штаммов микроорганизмов.

а) генетика; б) эволюция; в) селекция.

2. Какую форму искусственного отбора применяют в селекции животных?

а) массовый; б) индивидуальный.

3. При какой гибридизации возникает инбредная депрессия?

а) близкородственное; б) не родственное.

4. Для чего производят инбридинг?

а) получение гетерозисных гибридов; б) получение чистых линий;

в) усиление доминантности признака.

5. В чем выражается эффект гетерозиса?

а) снижение жизнестойкости и продуктивности;

б) увеличение жизнестойкости и продуктивности;

в) увеличение плодовитости.

6. Сохраняется ли эффект гетерозиса при дальнейшем размножении гибридов?

7. У каких организмов встречается полиплоидия?

а) растения; б) животные; в) микробы.

8. Совокупность культурных растений одного вида, искусственно созданная человеком и характеризующаяся наследственно стойкими особенностями строения и продуктивности.

9. Использование живых организмов и биологических процессов в производстве.

а) биотехнология; б) генная инженерия; в) клонирование.

10. Изменение генотипа методом встраивания гена одного организма в геном другого организма.

а) биотехнология; б) генная инженерия; в) клонирование.

  1. Какие способы размножения свойственны жи вотным?

а) половое, б) бесполое, в) вегетативное.

  1. Какие способы размножения свойственны растениям?

а) половое, б) бесполое, в) вегетативное.

  1. Какие формы искусственного отбора применяют в, селекции животных?

а) массовый, б) индивидуальный.

  1. При каком скрещивании возникает инбредная депрессия?

а) близкородственное, б) неродственное.

  1. Для каких целей осуществляют, близкородствен ное скрещивание?

а) усиление жизненной силы, б) усиление доминантности признака, в) получение чистой линии.

  1. В чем выражается гетерозис?

а) повышение продуктивности гибрида, б) усиление плодовитости гибрида,

в) получение новой породы или сорта.

  1. Как размножаются гетерозисные гибриды у рас тений?

а) вегетативно, б) половым путем, в) не размножают ся.

  1. Как размножаются гетерозисные гибриды у животных?

а) вегетативно, б) половым путем, в) не размножают ся.

  1. У каких организмов встречается полиплоидия?

а) растения, б) животные, в) человек.

  1. Применяют ли в селекции животных метод ментора?
  1. Родиной многих клубненосных растений, в том числе кар тофеля, является центр.

А. Южноазиатский В. Южноамериканский тропический.

Б. Средиземноморский. Г. Центральноамериканский.

  1. Использование методов биотехнологии в селекции позволяет.

А. Ускорить размножение нового сорта. Б. Создать гибрид растения и животного.

В. Ускорить размножение новых пород. Г. Выявить наследственные заболевания у человека.

  1. Метод выделения отдельных особей среди сельскохозяйст венных культур и получения от них потомства называется.

А. Массовым отбором. Б. Межлинейной гибридизацией.

В. Отдаленной гибридизацией. Г. Индивидуальным отбором.

  1. В селекционной работе с микроорганизмами используют.

А. Близкородственное разведение. Б. Методы получения гетерозиса.

В. Отдаленную гибридизацию. Г. Экспериментальное получение мутаций.

  1. Около 90 видов культурных растений, в том числе кукуруза,

А. Восточноазиатского. В. Центральноамериканского.

Б. Южноазиатского Г. Абиссинского тропического.

  1. Бесплодие межвидовых растительных гибридов возможно

А. Гетерозиса. В. Индивидуального отбора.

Б. Массового отбора. Г. Полиплоидии.

  1. В селекционной работе с растениями не используют.

А. Отдаленную гибридизацию. Б. Массовый отбор.

В. Испытание производителей по потомству. Г. Индивидуальный отбор.

  1. В селекционной работе с животными не используют.

А. Родственное скрещивание. Б.Полиплоидию.

В. Межлинейную гибридизацию. Г. Неродственное скрещивание.

  1. Искусственный перенос нужных генов от одного вида живых организмов в другой вид, часто далекий по своему происхожде нию, относится к методам.

А. Клеточной инженерии. Б. Хромосомной инженерии.

В. Отдаленной гибридизации. Г. Генной инженерии.

  1. Первым этапом селекции животных является….

А. Бессознательный отбор. Б. Гибридизация.

В. Одомашнивание. Г. Методический отбор.

1.Слово «селекция» означает отбор.

2.В основе селекционного процесса лежит естественный отбор.

3.Чистые линии растений получают путем самоопыления.

4. При массовом отборе обязательно учитывают генотип особей, отбираемых для дальнейшего скрещивания

5.Полиплоидию вызывают, воздействуя на клетки колхицином.

6.Инбридинг применяют с целью повышения разнообразия генетического материала.

7. Инбридинг – близкородственное скрещивание.

8.Гетерозисом называют явление перехода генов в гетерозиготное состояние.

9.Генная инженерия позволяет встраивать гены одного организма в геном другого организма.

10. В биотехнологии используют в основном микроорганизмы.

Ответы к тесту по теме «Селекция»:

1в. 2б. 3а. 4б. 5б. 6б. 7а. 8б. 9а. 10б. 1а, 2абв, 3б, 4а, 5в, 6а, 7а, 8в, 9а, 10б.

1+. 2-. 3+. 4-. 5+. 6-. 7+. 8-. 9+. 10+. 1в, 2а, 3г, 4г, 5в, 6г, 7в, 8б, 9г, 10в.

источник

Бесплодие межвидовых растительных гибридов возможно преодолевать с помощью

7. В селекции растений самоопыление в основном применяют для

1) перевода у гибридов генов в гомозиготное состояние

2) повышения жизнеспособности у гибридов

3) перевода у гибридов генов в гетерозиготное состояние

4) появления у гибридов новых наследственных признаков

8. В селекции растений бесплодие межвидовых гибридов преодолевают при помощи

3) отдаленной гибридизации

4) межлинейной гибридизации

9. Полиплоидию активно применяют в селекции:

10. В селекции микроорганизмов для получения высокопродуктивных рас бактерий и грибов в основном применяют

1) близкородственное скрещивание

2) искусственный мутагенез и отбор

3) отбор и отдаленную гибридизацию

4) отбор и межлинейную гибридизацию

11. В селекции растений много высокопродуктивных сортов плодовых деревьев и кустарников вывел

12. В селекции животных отдаленную гибридизацию в основном применяют для

1) получения плодовитых межвидовых гибридов

2) преодоления бесплодия у межвидовых гибридов

3) повышения плодовитости у существующих пород

4) получения эффекта гетерозиса у бесплодных гибридов

13. Центр происхождения кофе:

4) Южноамериканский (Андийский).

14. Родина винограда, оливкового дерева, льна находится в:

15. Европейско-Сибирское происхождение имеет:

16. Гибрид пшеницы с рожью — тритикале был получен методом:

1) близкородственного скрещивания;

2) искусственного мутагенеза;

3) отдаленной гибридизации;

4) межсортового скрещивания.

17. Однородная группа животных, обладающих наслед­ственно закрепленными, хозяйственно значимыми при­знаками, называется:

18. Биотехнология основана:

1) на изменении генетического аппарата клеток

2) воздействие на клетки мутагена

3) создание искусственных моделей клеток

19. Близкородственное скрещивание животных можно отнести к:

4) искусственному мутагенезу

20. Великий селекционер И.В. Мичурин занимался выведением:

21. Явление, при котором происходит многократное увели­чение количества хромосом в геноме, называется ….

22. Искусственно созданная человеком совокупность особей животных одного вида, характеризующаяся определенными наследственными особенностями -….

23. Главная движущая сила в образовании новых пород животных и сортов растений, приспособленных к интересам человека — ….

24. Контролируемый человеком процесс возникновения мутаций, успешно применяемый в селекции растений и микроорганизмов ……

25. Наука о выведении новых групп живых организмов …….

источник

2. Преодоление бесплодия межвидовых гибридов растений

Отдаленная гибридизация не находит широкого применения в селекции по причине бесплодности получаемых гибридов. Одним из выдающихся достижений современной генетики и селекции явилась разработка способа преодоления бесплодия межвидовых гибридов, приводящего в некоторых случаях к получению нормально размножающихся гибридов. Впервые это удалось осуществить в 1922–1924 гг. русскому генетику, ученику Н.И. Вавилова, Георгию Дмитриевичу Карпеченко (1899–1942) при скрещивании редьки и капусты. Оба эти вида имеют (в диплоидном наборе) по 18 хромосом. Соответственно их гаметы несут по 9 хромосом (гаплоидный набор). Гибрид имеет 18 хромосом, но он совершенно бесплоден, т.к. «редечные» и «капустные» хромосомы в мейозе не конъюгируют друг с другом.

Читайте также:  Как проверить сперму на бесплодие

Г.Д. Карпеченко действием колхицина удвоил число хромосом гибрида. В результате в гибридном организме оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза, т.к. каждая хромосома имела себе парную. «Капустные» хромосомы конъюгировали с «капустными», а «редечные» – с «редечными». Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называютсяаллополиплоиды. В зиготе вновь оказалось 36 хромосом.

Таким образом, полученный капустно-редечный гибрид, названный рафанобрассикой, стал плодовитым. Гибрид не расщеплялся на родительские формы, т.к. хромосомы редьки и капусты всегда оказывались вместе. Это созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки. Отдаленная гибридизация в сочетании с удвоением числа хромосом (полиплоидия) привела к восстановлению плодовитости.

Г.Д. Карпеченко удалось впервые четко продемонстрировать взаимосвязь отдаленной гибридизации и полиплоидии в получении плодовитых форм. Это имеет огромное значение как для эволюции, так и для селекции.

3. Геном растений. Форма хромосомы. Виды тетрады

Геном (нем. Genom) — совокупность генов, характерных для гаплоидного набора хромосом данного вида организмов; основной гаплоидный набор хромосом. Термин предложен Г. Винклером в 1920. В отличие от генотипа, Геном представляет собой характеристику вида, а не отд. особи. При отдалённой гибридизации можно получить организмы, несущие разные геномы, аллополиплоиды (напр., гибриды между пшеницей и пыреем, пшеницей и элимусом, рожью и пыреем). Виды растений, содержащие различные геномы, иногда встречаются и в природе (например, некоторые виды пшеницы). Для определения числа и сходства генома у разных видов используют спец. метод — геномный анализ. У диплоидных организмов геном является дискретной единицей генетич. анализа, поскольку гаметы у них в норме содержат по одному геному. Можно рассматривать геномы и как функциональную единицу, необходимую для нормального развития организма, т. к. для множество организмов (особенно растений) существуют в норме или получены экспериментально гаплоиды, развивающиеся на основе одного генома характерный для каждого вида организмов гаплоидный (одинарный) набор хромосом; совокупность всех генов (всей ДНК), заключённых в гаплоидном наборе. Термин «геном» относят и к генетическому материалу бактерий (прокариот) и вирусов, представленному одной молекулой ДНК или РНК. В геном эукариот не включают ДНК митохондрий и других органоидов цитоплазмы.

Размер генома, определяемый количеством ДНК (измеряется числом пар, образующих ДНК нуклеотидов, или в единицах массы), изменялся в ходе эволюции и различен у разных групп организмов. Геном бактерий состоит в среднем из 10 6 пар нуклеотидов, грибов – из 10 7 пар, геном большинства животных и многих растений – из 10 9 нуклеотидных пар. У значительной части семенных растений, а также у саламандр и некоторых древних рыб он достигает размера в 10 10 пар нуклеотидов. Геном человека включает примерно 3 млрд. (3·10 9 ) пар нуклеотидов. Хотя у более продвинутых групп геном обычно больше, чем у их эволюционных предшественников, прямого и однозначного соответствия между сложностью организма и размером генома нет. растение эндосперм бесплодие хромосома

Клетки диплоидных организмов содержат два генома – один от «отца», другой от «матери». Но в природе, чаще у растений, встречаются виды, у которых хромосомный набор представлен несколькими геномами. Это явление – полиплоидию – можно вызвать искусственно. Путём гибридизации разных видов получают организмы – аллополиплоиды, в клетках которых одновременно присутствуют геномы разных видов.

В 2001 г. в основном завершился начатый в кон. 1980-х гг. международный научный проект «Геном человека», ставивший своей целью полную расшифровку нуклеотидной последовательности всех генов человека. «Прочитан» весь «текст» нуклеотидной последовательности ДНК человека, включающий от 30 до 40 тыс. генов. При этом оказалось, что работающие гены занимают всего лишь менее 5% генома; функции остальной части ДНК не ясны. Полученные данные позволят сделать принципиальный вклад в решение самых сложных проблем биологии и здоровья человека.

Геномы живых организмов — от вирусов до животных — различаются по размеру на шесть порядков: от нескольких тысяч п.о. до нескольких миллиардов п.о. Если исключить вирусы, то для клеточных организмов ширина диапазона составит четыре порядка. По количеству генов диапазон значительно ýже и составляет четыре порядка с нижним пределом 2-3 гена у самых простых вирусов и с верхним значением около 40 тысяч генов у некоторых животных. Если исключить из рассмотрения вирусы и бактерии, которые ведут паразитический или симбиотический образ жизни, то диапазон изменчивости геномов по числу генов становится совсем узким, составляя немногим более одного порядка [12] .

По соотношению размера генома и числа генов геномы могут быть разделены на два чётко выделенных класса:

Небольшие компактные геномы размером, как правило, не более 10 млн п.о., со строгим соответствием между размером генома и числом генов. Такими геномами обладают все вирусы и прокариоты. У этих организмов плотность генов составляет от 0,5 до 2 генов на тысячу п.о., а между генами имеются очень короткие участки, занимающие 10-15 % длины генома. Межгенные участки в таких геномах состоят главным образом из регуляторных элементов. Помимо вирусов и прокариот к этому классу могут быть отнесены и геномы большинства одноклеточных эукариот, хотя их геномы демонстрируют несколько меньшую зависимость между размером генома и числом генов, а размер генома может достигать 20 млн п.о.

Обширные геномы размером более 100 млн п.о., у которых нет чёткой взаимосвязи между размером генома и числом генов. К этому классу относятся большие геномы многоклеточных эукариот и некоторых одноклеточных эукариот. В отличие от геномов первой группы большинство нуклеотидов в геномах этого класса относятся к последовательностям, которые не кодируют ни белков, ни РНК

Геном Arabidopsis thaliana почти в два раза меньше, чем у её ближайшего родственника, Arabidopsis lyrata. Но при этом потери пошли A. thaliana только на пользу: из её генома исчезли последовательности транспозонов, провоцирующие опасные мутации.

Каков размер генома у растений? — Трудный вопрос. Наиболее крупный геном у вороньего глаза: он в тысячу раз превосходит самый короткий, коим обладают хищные растения из рода Genlisea. А в какую сторону эволюция подталкивает растения — к увеличению или уменьшению запасов ДНК? Те же вороний глаз и хищные генлисеи — слишком разные виды, чтобы можно было оценить направление эволюции. Для этого нужны более или менее родственные виды.

Исследователи из Института биологии развития имени Макса Планка (Германия) предприняли сравнительный анализ геномов резуховидки лиролистной и резуховидки Таля (согласитесь, по-русски это звучит куда хуже, чем Arabidopsis). Оба вида, представляющие знаменитейший и популярнейший среди биологов род Arabidopsis, произошли от одного предка, и их эволюционные пути разошлись не так уж давно — всего 10 млн лет назад.

Читайте также:  Где можно обследоваться с мужским бесплодием

Геном резуховидки Таля секвенирован уже много раз, его длина составляет 125 млн «букв» (то есть пар нуклеотидов), которые складываются в 27 025 генов, расположенных на пяти хромосомах. Геном резуховидки лиролистной — почти вдвое больше: 207 млн «букв». А вот выигрыш по генам не столь велик: 32 670 генов на восьми хромосомах. ДНК р. лиролистной оказалась больше за счёт незначащих зон, которые не кодируют белки и не имеют регуляторных функций.

Учёные решили проверить, что именно есть у одного растения и чего нет у второго. Выяснилось, что геном р. Таля стал таким за счёт потерь сотен и тысяч пар оснований в областях транспозонов и между ними. Транспозоны, или мобильные элементы, обладают свойством самопроизвольно «прыгать» из одного участка генома в другой, и такие прыжки часто приводят к негативным эффектам: транспозон может встроиться в ген и полностью нарушить его функцию.

По словам исследователей, р. лиролистная недалеко ушла от своего предка, имея восемь хромосом и много «мусора» в геноме. Напротив, A. thaliana избавила себя от многих неприятностей, отбросив в ходе эволюции не вызывающие доверяя участки собственного генома.

Хромосома — специализированные структуры клеток, предназначенные для хранения наследственной информации и правильного ее распределения в период деления клеток.

Впервые хромосомы были описаны в 80-х гг. 19 в. в виде компактных телец палочковидной формы, выявляемых под микроскопом в ядре на определенной стадии деления клетки. Позже оказалось, что хромосома постоянно имеются в каждой клетке, однако их внешний вид значительно изменяется на разных стадиях жизни клетки. Установлено, что хромосомы представляют собой нитевидную структуру огромной длины (так наз. хромонема, или хроматиновая нить), котораярая может закручиваться, образуя компактную спираль (спирализовываться), или раскручиваться (деспирализовываться). За счет спирализации компактность хроматиновой нити может увеличиваться в десятки тысяч раз и более. Такая плотная спирализация осуществляется перед началом деления клеток и обеспечивает точное перераспределение хромосом по дочерним клеткам. Во время деления клеток индивидуальные хромосомы имеют вполне определенную форму и размер. На стадии митотического деления хромосомы становятся видимыми в световом микроскопе. У них можно заметить участок, называемый центромерой, к к-рому прикрепляются особые нити (так наз. нити веретена), участвующие в «растягивании» хромосом во время деления клеток. Центромера располагается в центре хромосомы, деля ее на два равных плеча, или же может сдвигаться к одному из концов. В последнем случае говорят, что данная хромосома неравноплеча. Кроме того, некоторыерые хромосомы имеют утоньшения в отдельных точках (так наз. вторичные перетяжки) и другие особенности, помогающие идентификации хромосом в клетках различных видов. Число хромосом во всех клетках каждого вида организмов строго постоянно и является точной характеристикой данного вида.

Так как показывают последние достижения молекулярной генетики, хромосома представляет собой фактически одну длинную хроматиновую нить, образованную гигантской молекулой ДНК

Клетки человека содержат 4G хромосом (23 пары). Изменения в числе или строении как отдельных хромосом, так и всего хромосомного набора приводят к резкому изменению организма и служат причиной возникновения хромосомных болезней. Роль хромосом как спец. клеточных структур, содержащих в себе наследственную информацию и предназначенных не только хранить эту информацию в ряду поколений клеток и организмов, но и обеспечивать реализацию этой информации по мере развития организмов, находит свое отражение в тонком строении хромосом — их молекулярной организации. Хроматиновая нить, слагающая хромосома, образована единой, тянущейся по всей длине хроматиновой нити молекулой дезоксирибонуклеиновой кислоты — ДНК, соединенной со специализированными ядерными белками нескольких типов. Часть этих белков образует структурную основу хроматиновой нити, на которую как бы нанизывается молекула ДНК. В частности, одна группа ядерных белков, соединенная с участком молекулы ДНК, образует элементарную структурную единицу хроматиновой нити — так называемое нуклеосому . Диаметр ее составляет около 100—110 ангстрем (100—110 стомиллионных частей сантиметра). Ряд последовательно расположенных нуклеосом образует хроматиновую нить. Нуклеосомы видны под электронным микроскопом.

Каждая хромосома на стадии клеточного деления имеет характерную для нее и относительно постоянную форму, а набор хромосом (их число и форма) в клетках одного вида организмов постоянен и может служить точной характеристикой данного вида. Однако хромосомы могут подвергаться (в результате различных воздействий на клетки) структурным изменениям. Известно несколько типов структурных изменений хромосом. Одни из них могут быть связаны как с разрывами отдельных участков хромосом, приводящими к формированию свободных фрагментов, так и с переносом оторванных фрагментов к другим участкам этой же или другой хромосомы. Иногда оторванные фрагменты или оставшиеся после отрыва фрагментов части хромосом замыкаются концами, образуя кольцевые структуры.

Форма хромосом определяется в первую очередь положением центромеры. В метацентричных хромосомах она расположена в середине хромосомы и делит ее на два плеча равной длины; при другом расположении центромеры плечи хромосомы имеют разную длину. Часто можно дать еще более детальное описание кариотипа благодаря наличию на определенных участках плеч хромосомы вторичных перетяжек. В местах этих перетяжек часто образуются ядрышки. Это особенно хорошо видно на хромосомах со спутниками, у которых близ дкстального конца одного из плеч имеется вторичная перетяжка, отделяющая небольшой участок хромосомы, называемый спутником. Спутник имеет определенную форму и величину и кажется почти совершенно отделенным от остальной хромосомы; он соединен с хромосомой лишь тонкой нитью, которая бывает различной длины.

Это червеобразные структуры; число и форма хромосом однозначно характеризуют вид растения или животного. Во всех клетках человеческого тела, кроме половых, содержится по 23 пары хромосом, всего 46 хромосом. Такие цепочечные структуры с изломами напоминают по форме хромосомы, которые Шредингер удачно определил как апериодический кристалл.

Выбор исходной популяции связан с представлением параметров задачи в форме хромосом, т.е. с так называемым хромосомным представлением. Это представление определяется способом кодирования. Длина хромосом зависит от условий задачи, точнее говоря — от количества точек в пространстве поиска.

Ядерный материал в оформленных ядрах представлен относительно большими гранулами, но не в форме идентифицируемых хромосом, хотя они сохраняют свою индивидуальность в интерфазе.

Рекомбинация у эукариотических клеток была выявлена генетическими методами, а в отдельных случаях и путем наблюдения форм хромосом. Этот процесс происходит при созревании половых клеток, на первой фазе которого две пары хромосом, образовавшиеся в результате предшествующей репликации, вместо того чтобы разойтись по двум дочерним клеткам, как это имеет место при обычном клеточном делении — митозе, предварительно объединяются в единую структуру некоторыми гомологичными сегментами. Это создает благоприятные условия для гомологичной рекомбинации, которая у эукариот, в первую очередь у дрозофилы, была открыта задолго до выяснения рекомбинации у бактерий и получила название кросситовера. Рекомбинация сама по себе не создает новых генов, однако в результате нее возникают новые комбинации признаков, которые могут оказаться весьма существенными как при естественном отборе, так и в селекционных работах.

Читайте также:  Чистка крови от бесплодия

Говоря о кариотипе данного вида, мы подразумеваем сочетание всех имеющихся сведений о числе, размерах и форме хромосом в его клетках.

Принцип изучения хромосом в культуре лейкоцитов периферической крови человека в общих чертах заключается в следующем: присутствие в среде фитогемагглютинина стимулирует деление кровяных клеток, а введение колхицина останавливает это деление на стадии метафазы, когда хорошо выявляются число и форма хромосом.

В клеточном ядре на определенной стадии развития клетки становятся видимыми под микроскопом ( под обычным оптическим микроскопом) хромосомы. Это червеобразные структуры; число и форма хромосомоднозначно характеризуют вид растения или животного. Во всех клетках человеческого тела, кроме половых, содержится по 23 пары хромосом, всего 46 хромосом.

Хроматин представляет собой деспирализованную форму хромосом. Перед клеточным делением хромосомы имеют вид длинных тонких нитей. В хромосомах находится ДНК — генетический материал.

Репликация хромосомной ДНК происходит еще до начала митоза в интерфазном ядре. В начале митоза хромосомы спирализуются и образуют компактные структуры, видимые в световой микроскоп. Каждому виду эукариот свойственны определенное число и форма хромосом — набор хромосом в целом определяет кариотип данного вида. Во время укорочения хромосом в ядерной области происходит быстрая сборка биполярной структуры в форме веретена, состоящей из микротрубочек; ее называют митотическим аппаратом. Образование этой структуры обычно сопровождается разрушением ядрышка и ядерной мембраны. Хромосомы выстраиваются в экваториальной области веретена, причем каждая хромосома расщепляется вдоль на две идентичные дочерние структуры — хрома гиды. Затем два набора хроматид расходятся к полюсам митотического аппарата; на полюсах формируются два дочерних ядра, а веретено в это время распадается.

В классическом генетическом алгоритме ( представленном в разд. Для повышения эффективности его работы создано множество модификаций основного алгоритма. Они связаны с применением других методов селекции, с модификацией генетических операторов ( в первую очередь оператора скрещивания), с преобразованием функции приспособленности ( путем ее масштабирования), а также с иными способами кодирования параметров задачи в форме хромосом. Существуют также версии генетических алгоритмов, позволяющие находить не только глобальный, но и локальные оптимумы. Это алгоритмы, использующие так называемые ниши, введенные в генетические алгоритмы по аналогии с природными экологическими нишами. Другие версии генетических алгоритмов служат для многокритериальной оптимизации, т.е. для одновременного поиска оптимального решения для нескольких функций. Встречаются также специальные версии генетического алгоритма, созданные для решения проблем малой размерности, не требующих ни больших популяций, ни длинных хромосом. Их называют генетическими микроалгоритмами.

В основе формирования тетрады Фалло лежит недоразвитие инфундибулярного отдела правого желудочка (или конуса), в результате которого возникают четыре ее классических признака: большой ДМЖП, обструкция выводного отдела правого желудочка, гипертрофия правого желудочка и декстропозиция аорты. Тетрада Фалло входит в десятку наиболее распространенных пороков сердца. У детей старше года это самый частый цианотический порок. Частота патологии составляет 0,21—0,26 на 1000 новорожденных, 6—7% среди всех ВПС и 4% среди критических ВПС. Морфологической основой порока являются большой ДМЖП, создающий условия для равного давления в обоих желудочках, и обструкция выхода из правого желудочка. Гипертрофия правого желудочка является следствием этой обструкции, а также его объемной перегрузки. Позиция аорты может варьировать в значительной степени. Обструкция выхода из правого желудочка чаще всего представлена инфундибулярным стенозом (45%), в 10% случаев стеноз существует на уровне легочного клапана, в 30% случаев он является комбинированным. У 15% больных имеется атрезия легочного клапана. Редкий вариант представляет тетрада Фалло с агенезией легочного клапана (синдром отсутствия легочного клапана). Вместо клапана имеются лишь рудиментарные валики; стеноз создается гипоплазированным легочным кольцом. Данный вариант часто сочетается с делецией хромосомы 22qll. У 40% больных встречаются дополнительные пороки — ОАП, вторичный ДМПП, сосудистое кольцо, открытый общий атриовентрикулярный канал, частичный аномальный дренаж легочных вен, добавочная левосторонняя верхняя полая вена. Примерно у 3% больных обнаруживают второй мышечный ДМЖП. В 25% случаев имеется правосторонняя дуга аорты. Однако такая патология как коарктация аорты — скорее казуистика. Это связано с высоким кровотоком во внутриутробном периоде через перешеек аорты и хорошим развитием последнего. У 5-14% пациентов существуют аномалии коронарных артерий. Наиболее частая из них — отхождение от правой коронарной артерии аберрантной артерии (передней межжелудочковой ветви), пересекающей выводной отдел правого желудочка.

Дети с тетрадой Фалло обычно имеют нормальные показатели развития при рождении. Однако у большинства вскоре развивается умеренный центральный цианоз. Выраженный цианоз свидетельствует о крайней степени обструкции легочного кровотока, в частности — об атрезии легочной артерии. Из ранних симптомов следует отметить продолжительный систолический шум изгнания, выслушивающийся на основании сердца слева от грудины. При нарастании стеноза шум становится короче и мягче. У больных с атрезией легочной артерии шум может полностью отсутствовать или слышен функционирующий ОАП. В случаях с большими коллатералями можно выслушать их шум на спине. При агенезии легочного клапана шум имеет пансистолический характер с низкочастотным диастолическим компонентом слева от грудины, а клиническая картина характеризуется триадой: затруднение дыхания, сердечная недостаточность и цианоз. У этих больных легко развиваются ателектазы и пневмонии вследствие сдавления расширенной легочной артерией прилегающих бронхов. В некоторых случаях может потребоваться искусственная вентиляция легких для компенсации дыхательной недостаточности. Общим правилом при тетраде Фалло является то, что раннее появление выраженной симптоматики свидетельствует о неблагоприятной анатомии порока (гипоплазия легочной артерии, атрезия легочного клапана, выраженный инфундибулярный стеноз, гипоплазия левого желудочка). Пациенты с такой анатомией составляют группу критических больных (около 35%), которым требуется проведение интенсивной терапии и оперативного вмешательства вскоре после рождения. Спектр проявлений гипоксемии достаточно широк: от умеренного цианоза до затяжного гипоксического статуса. Характерными для тетрады Фалло являются одышечно-цианотические (гипоксические) приступы. Приступ начинается часто после крика, кормления или дефекации. Ребенок становится беспокойным, усиливаются одышка и цианоз, затем нарастает вялость, пропадает шум над областью сердца. В тяжелых случаях возможны апноэ и потеря сознания, судороги. Развитие приступов связано со спазмом инфундибулярного отдела правого желудочка, в результате чего возрастает сброс венозной крови в аорту и усиливается гипоксия ЦНС. Исходя из такого механизма понятно, что при атрезии легочной артерии нет основы для возникновения приступов. У этих больных усиление цианоза связано с закрытием или относительным стенозом сосудов, кровоснабжающих легкие (ОАП, коллатерали), и обычно переходит в гипоксический статус, редко купирующийся самостоятельно. Следует отметить, что анемия играет существенную роль в клинической симптоматике заболевания. С одной стороны, она уменьшает видимый цианоз, скрывая тяжесть заболевания, а с другой — уменьшает возможность доставки кислорода к органам. В результате гипоксические приступы у пациентов с анемией возникают чаще, протекают тяжелее и чреваты мозговыми осложнениями.

источник

Лечение онлайн
Добавить комментарий

Adblock
detector